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Generic Model Control for Lithium-Ion Batteries
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Battery Management Systems (BMS) are critical to safe and efficient operation of lithium-ion batteries and accurate predic-
tion of the internal states. Smarter BMS that can estimate and implement optimal charging profiles in real-time are impor-
tant for advancement of the Li-ion battery technology. Estimating optimal profiles using physics-based models is computa-
tionally expensive because of the non-linear and stiff nature of the model equations, involving the need for constrained non-
linear optimization. In this work, we present an alternative approach to control batteries called as Generic Model Control,
or Reference System Synthesis. This work enables robust stabilization and control of battery models to set-point as an al-
ternative approach, eliminating the need to perform optimization of nonlinear models. As compared to the generic model
control approaches implemented by previous researchers, we implement the same concept using direct DAE numerical
solvers. The results are presented for single input single objective problems, and for constrained problems for various battery
models.
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Lithium-ion batteries are used in a wide range of applications rang-
ing from cell phones to electric vehicles (EVs) to electric grids. With
the expected decline in the price of batteries over the next few years,
the market for EVs and grids is growing rapidly. Long recharging
times, capacity fade and thermal runaway are some of the main issues
that need to be addressed in order to use batteries safely and efficiently
for a longer time. This necessitates the use of smarter battery man-
agement systems that can derive optimal use strategies by exploiting
the dynamics of the battery.

Battery models based on transport, physical, electrochemical and
thermodynamics principles can be used to monitor the internal states
of the battery and to obtain optimal control strategies. Such mod-
els are computationally expensive which limits their use in control
applications in real-time. Various issues, such as the onset of dy-
namics of some internal states only during use of batteries at high
charge/discharge rates, and several other states which are active only
while charging or discharging, adds to the challenges of the observ-
ability of these physics-based electrochemical models. Hence, various
approximated and reduced order models have been proposed in the
past, to make the models strongly observable in local intervals.1,2–5

These models are also highly non-linear in nature, which adds signifi-
cant challenges to implement control strategies along with the above-
mentioned issues. Past researchers have shown multivariable control
techniques like Dynamic Matrix Control (DMC),6 Internal Model
Control (IMC),7 and Model Predictive Heuristic Control (MPHC)8

for a variety of systems. However, these models suffer from their re-
liability on the linear approximations of the experimentally obtained
step-response data and do not directly consider the full nonlinear
model explicitly.

Several researchers have been working to design optimal charg-
ing profiles for batteries by implementing a wide range of control
strategies. Methekar et al.9 derived optimal charging profiles for max-
imizing the energy using the Control Vector Parameterization (CVP)
approach. Rahimian et al.10 calculated the charging current to mini-
mize the capacity fade vs. cycle number using a single particle model
(SPM). Perez et al.11 obtained optimal charging profiles for batteries
with constraints on temperature as well as concentration of lithium
in solid and electrolyte phase. Suthar et al.12 proposed optimal charg-

∗Electrochemical Society Student Member.
∗∗Electrochemical Society Member.

zE-mail: vsubram@uw.edu

ing profiles for minimizing the intercalation induced stresses inside
particle using simultaneous discretization approach. Hoke et al.13 pro-
posed a method to minimize the cost of battery charging in markets
with variable electricity costs after accounting for battery degradation.
However, all of these methods require nonlinear and robust optimiza-
tion approaches.

In this article, we present an alternative approach to control bat-
teries, applying the method of Generic Model Control (GMC),14 also
known as Reference System Synthesis.15 This approach is based on
a set-point strategy for the measured (state) variable. GMC has pre-
viously been implemented on various applications such as multistage
flash desalination,16 distillation column control,17–19 control of nutri-
ents – removing activated sludge systems,20 armature current control
of DC motor,21 etc. In this article, we apply the GMC technique to
physics-based battery models. Lee and Sullivan14 originally proposed
the GMC algorithm for ordinary differential equations (ODEs) and for
problems in which the measured variable is not explicitly dependent on
the manipulated variable. Here, we extend the GMC technique to dif-
ferential algebraic equations (DAEs) with set points for algebraic vari-
ables, and for problems in which the output is directly dependent on
control, for applying it to battery models. Application of GMC requires
robust DAE solvers. By combining GMC approach with robust DAE
solvers, we show the ability to reformulate some of the common con-
trol and optimization problems for batteries as direct simulation prob-
lems. By rewriting charging and optimization objective as set-point
control problems, we derive control profiles using the GMC approach.
While the theoretical internal stability for the GMC approach is yet to
be proven unlike nonlinear model predictive control approaches,22 in
our experience, the GMC approach is computationally competitive as
it avoids the need for optimization for unconstrained problems, and
for problems with bounds on the manipulated variable. The gain in
CPU time is obtained only if efficient and robust DAE solvers are
used.

In subsequent sections, we discuss the theory behind the GMC
framework, followed by case studies for applying GMC control for-
mulation for a thin film nickel hydroxide electrode, a single particle
model, along with discussing various objectives for a physics-based
Li-ion battery model. For the physics-based Li-ion battery model, the
first case demonstrates the problem formulation and implementation
for obtaining a current profile for a set-point given on the charge stored
in the battery. The second case considers a set-point of 4.2 V for volt-
age of the cell, without any bounds on the applied current, followed
by current containing bounds.
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Generic Model Control

The generic model control (GMC) strategy is based on finding val-
ues for the manipulated variable that forces the controlled (measured)
variable to reach its set-point in a non-linear process model. The de-
sired set-point and its measured variable is compared to generate the
error. The obtained error is used in GMC architecture to generate con-
trol input for the system (process dynamics) to direct the controlled
variable toward the desired set-point.

The strategy for implementing generic model control is described
as follows. Consider a dynamic process model given by a set of
differential equations:

dx

dt
= f (x, u, t) [1]

where x is the vector of state variables of dimension n, u is the scalar
process input (also called as manipulated variable) of dimension m, t
is the time. The relation for output variables is given by:

Y = M(x, u) [2]

where Y is a vector of output variables (measured variables) of dimen-
sion p.

To obtain control law from above Equations 1 and 2, a reference
trajectory proposed by Lee and Sullivan14 is given as,(

dY

dt

)
= K (Y set − Y ) + K

τi

∫ t

0

(
Y set − Y

)
dτ [3]

where Y set is the desired set-point, K and τi are the tuning parameters.
The first term of the right hand side of Equation 3 is the rate of change
of Y moving toward the desired set-point Y set , and can be referred to
as the Proportional term. The second term is added to minimize the
offset between the actual value and the desired set-point, and can be
referred to as the Integral term. Using Equation 3, a generic control
law is obtained for GMC, which is given as,

dY

dt
− K

(
Y set − Y

) − K

τi

t∫
0

(
Y set − Y

)
dτ = 0 [4]

The term ( dY
dt ) is the reference trajectory that can be obtained using

Equations 1 and 2.(
dY

dt

)
= ∂ M

∂x
f (x, u, t) + ∂ M

∂u
· du

dt
[5]

Combining Equations 4 and 5 gives the control law of GMC in terms
of the process model and the reference trajectory.

∂ M

∂x
f (x, u, t) + ∂ M

∂u

du

dt
− K

(
Y set − Y

) − K

τi

t∫
0

(
Y set − Y

)
dτ = 0

[6]
Most physics-based battery models are given by partial differential
equations (PDEs), which are converted to DAEs for simulation or
optimization. Often times, the output or the measured variable is a
direct function of the manipulated variable. Below, we discuss an
approach to apply GMC for DAEs, including cases for which set
point is given for an algebraic variable.

Consider an index-1DAE system governing two scalars y and z
given by:

dy

dt
= f (y, z, u) [7]

g(y, z, u) = 0 [8]

where, y is the differential variable, z is the algebraic variable and u
is the manipulated variable. If the controlled (measured) variable isy,
then Equations 4 and 6 can be used directly, as the derivative is explic-
itly available from the model equations. If the measured variable is z
(for example potential as in the case of batteries), then the derivative

( dz
dt ) is not available directly from the model equations. The derivative

( dz
dt ) in such cases, can be obtained by differentiating Equation 8 with

time to get:

dg

dt
=∂g

∂y
(y, z, u)· f (y, z, u)+ ∂g

∂z
(y, z, u)· dz

dt
+ ∂g

∂u
(y, z, u)· du

dt
=0

[9]
GMC equation for this case is given by:(

dz

dt

)
= K (zset − z) + K

τi

∫ t

0

(
zset − z

)
dτ [10]

Equation 10 can now be substituted in Equation 9 to get:

dg

dt
= ∂g

∂y
(y, z, u) · f (y, z, u) + ∂g

∂z
(y, z, u) ·

[
K (zset − z)

+ K

τi

∫ t

0

(
zset − z

)
dτ

]
+ ∂g

∂u
(y, z, u) · du

dt
= 0 [11]

In this case, Equation 7 governs the dynamics of the variable y, while
variables z and u are governed by Equations 8 and 11 respectively.
Even though a du

dt term appears in 11, since the experimental value of
z is known initially at time t = 0, the initial condition for u can be
calculated using 8. The final form of the equations to be solved for
obtaining the control profile is summarized in 12 as:

dy

dt
= f (y, z, u) (a)

g(y, z, u) = 0 (b)

dg

dt
= ∂g

∂y
(y, z, u) · f (y, z, u) + ∂g

∂z
(y, z, u)

·
[

K (zset − z) + K

τi

∫ t

0

(
zset − z

)
dτ

]
+

∂g

∂u
(y, z, u) · du

dt
= 0 (c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[12]

Generic Model Control for Battery Models

In this section, we discuss the performance of generic model con-
trol strategy for different types of battery models.

Thin film nickel hydroxide electrode.—Consider the DAE model
describing a galvanostatic charge of a thin-film nickel hydroxide elec-
trode as described by Wu et al.23 The model equations are given by:

d y1

dt
= j1 · W

FρV
[13]

j1 + j2 = Iapp [14]

d Q

dt
= Iapp [15]

j1 = i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)
−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
[16]

j2 = i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]
[17]

where y1 is the mole fraction of nickel hydroxide, φ1 represents the
potential difference at the solid-liquid interface and Q is the total
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Table I. Parameters of nickel hydroxide electrode.

Symbol Parameter Value Units

F Faraday constant 96,487 C/mol
R Gas constant 8.314 J/(mol K)
T Temperature 303.15 K
φ01 Equilibrium potential 0.420 V
φ02 Equilibrium potential 0.303 V
W Mass of active material 92.7 g
V Volume 1 × 10−5 m3

i01 Exchange current density 1 × 10−4 A/cm3

i02 Exchange current density 1 × 10−10 A/cm3

P Density 3.4 g/cm3

charge stored in the battery. Iapp represents the applied current and
is the manipulated variable for this model. The initial condition of
the variables is y1(0) = 0.05, φ1(0) = 0.350236, Q(0) = 0 and
Iapp(0) = 1 × 10−5. The parameters for this model are given in Table
I.

For this model, three different objectives are studied as discussed
below.

a) In the first objective, we solve the model for mole-fraction (y1) to
reach its desired set point (yset

1 ). Even though this model is a DAE,
the equation for the total derivative of the measured variable ( d y1

dt )
is directly available from the model (Equation 13). This can be
compared with Equation 2 to realize Y = y1.

The GMC formulation for this case is given by:

d y1

dt
= j1 · W

FρV
[18]

d y1

dt
= K · (

yset
1 − y1 (t)

) + K

τi
r (t) [19]

where r (t) represents the integral of the offset and is defined in Equa-
tion 20 as

dr

dt
= (

yset
1 − y1 (t)

)
[20]

From Equations 18 and 19, the following relation can be derived:

j1W

FρV
= K

(
yset

1 − y1 (t)
) + K

τi
r (t) [21]

Further, Equation 14 can be used to get:

(
Iapp − j2

)
W

FρV
= K

(
yset

1 − y1 (t)
) + K

τi
r (t) [22]

Using Equation 22, an explicit relation for Iapp can be written as,

Iapp = FρV

W

(
K

(
yset

1 − y1(t)
) + K

τi
r (t)

)
+ j2 [23]

Equations 13–17 along with 23 are solved simultaneously to get the
GMC control profile. The final set of equations (GMC model) to be

solved for this case are summarized again in 24.

d y1

dt
= j1 · W

FρV
(a)

j1 + j2 = Iapp (b)

d Q

dt
= Iapp (c)

dr

dt
= (

yset
1 − y1 (t)

)
(d)

Iapp = FρV

W

(
K

(
yset

1 − y1(t)
) + K

τi
r (t)

)
+ j2 (e)

j1 = i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)

−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
(f)

j2 = i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]
(g)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[24]

It should be noted that the manipulated variable (Iapp) is governed
by Equation 24(e), whereas Equation 24(a), 24(b) and 24(c) gov-
ern y1, φ1 and Q respectively. The initial condition for r (t) is as-
sumed to be zero, the proportionality constant K is taken to be 0.02,
and τi is assumed to be 3500. Figure 1a shows the profiles for
mole fraction (y1) for various set-points of yset

1 = [0.5, 0.6, 0.7].
Figure 1b shows the profiles of manipulated variable (Iapp)that
directs mole fraction (y1) to reach its desired set-point. An up-
per bound of 120 μA/cm2 is used for this case. The strategy
to implement bounded currents is explained in detail in the next
example.

b) In the second case, the same DAE model is solved for total
charged stored (Q) to reach its desired set point (Qset ). This case
is similar to the case (a) discussed above. Equation 15 can be
used to get the explicit derivative of the measured variable Q.
Hence, for this case:

Y = Q

The GMC formulation is given by the following set of
models,

d Q

dt
= K

(
Qset − Q (t)

) + K

τi
r (t) [25]

dr

dt
= (

Qset − Q (t)
)

[26]

From Equations 15 and 25, we can get:

Iapp (t) = K
(
Qset − Q (t)

) + K · r (t)

τi
[27]
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Figure 1. Profiles of (a) Mole fraction (y1) and (b) Applied current (Iapp) with time in the thin film nickel hydroxide electrode section (a).

If there are no bounds on current, the final set of equations to be solved
for this case is given as follows:

d y1

dt
= j1 · W

FρV
(a)

j1 + j2 = Iapp (b)

d Q

dt
= Iapp (c)

dr

dt
= (

Qset − Q(t)
)

(d)

Iapp = K
(
Qset − Q (t)

) + K

τi
r (t) (e)

j1 = i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)
−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
(f)

j2 = i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]
(g)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[28]

The controller parameters for this case are K = 0.1 and τi = 20, and
the initial condition for r (t) is taken to be zero. Different set points
for charge stored are tried for this case.

In case if there are bounds on the applied current, it is bounded by
applying upper and lower limits using relation given in Equation 27.
Here, we assume a lower bound of zero, and an upper bound of 120
μA/cm2. Such a case can be solved by introducing a dummy variable
(I1(t)), that represents the applied current in the GMC Equation 28(e),
and the bounds are then applied on the current variable (I1(t)) as

shown in Equation 29.

Iapp(t) = min
(
12 × 10−5, max (0, I1 (t))

)
[29]

For the bounded case, the final equations to be solved are summarized
below.

d y1

dt
= j1 · W

FρV
(a)

j1 + j2 = Iapp (b)

d Q

dt
= Iapp (c)

dr

dt
= (

Qset − Q(t)
)

(d)

I1 = K
(
Qset − Q (t)

) + K

τi
r (t) (e)

Iapp = min
(
12 × 10−5, max (0, I1)

)
(f)

j1 = i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)
−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
(g)

j2 = i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]
(h)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[30]

Figure 2a shows the profiles for charge stored with time for various
set points of Qset = [0.15, 0.2, 0.3] and Figure 2b shows the corre-
sponding control profile current for different set points. It can be seen
that the charge stored reaches its set point in all the cases.

c) In the third objective, the DAE model is solved for potential of
the battery, φ1 (which is an algebraic variable in this model) to
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Figure 2. Profles of (a) Charge stored (Q) and (b) Applied current (Iapp) with time in the thin film nickel hydroxide electrode section (b).

reach its desired set point φset
1 . For this case,

Y = φ1

The full derivative ( dφ1
dt ) is not given by the model equations and

∂g
∂u (y, z, u) (in Equation 9) is not zero. The GMC formulation for
this case is given by equations described earlier for the DAE model.
Equations 16 and 17 can be substituted in 14 to get:

Iapp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)
−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
+

i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
[31]

Equation 31 can now be differentiated to get:

d Iapp

dt

=

⎡⎢⎢⎣i0,1

⎡⎣2 (1 − y1) exp (a1) · F
2RT · dφ1

dt + 2 exp (a1)
(− d y1

dt

)
−2y1 exp (−a1) · (− F

2RT

) · dφ1
dt − 2 exp (−a1)

( d y1
dt

)
⎤⎦ +

i0,2

[
exp (a2) · F

RT · dφ1
dt − exp (−a2) · (− F

RT

) · dφ1
dt

]
⎤⎥⎥⎦

[32]

a1 = (φ1 − φ01) F

2RT
, a2 = (φ1 − φ02) F

2RT
[33]

Equation 32 is rewritten for dφ1
dt to get:

dφ1

dt
=

d Iapp

dt + 2i0,1 exp (a1)
( d y1

dt

) + 2i0,1 exp (−a1)
( d y1

dt

)⎡⎣i0,1

[
2 (1 − y1) exp (a1) · F

2RT − 2y1 exp (−a1) · (− F
2RT

)] +

i0,2

[
exp (a2) · F

RT − exp (−a2) · (− F
RT

)]
⎤⎦

[34]
Also, the equations for the GMC formulation is added as:

dφ1

dt
= K

(
φset

1 − φ1 (t)
) + K · r (t)

τi
[35]

dr

dt
= (

φset
1 − φ1 (t)

)
[36]

From Equations 34 and 35, we can get:

d Iapp

dt + 2i0,1 exp (a1)
( d y1

dt

) + 2i0,1 exp (−a1)
( d y1

dt

)⎡⎢⎢⎢⎢⎢⎢⎢⎣
i0,1

⎡⎢⎢⎢⎣
2 (1 − y1) exp (a1) · F

2RT
−

2y1 exp (−a1) ·
(

− F

2RT

)
⎤⎥⎥⎥⎦+

i0,2

[
exp (a2) · F

RT
− exp (−a2) ·

(
− F

RT

)]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= K
(
φset

1 − φ1 (t)
) + K · r (t)

τi
[37]

Equations 13–17 are solved together along with Equations 36 – 37 to
obtain the control profiles for this case. In order to implement bounds
on the applied current, a similar dummy variable (I1(t)), is added in
the GMC equation. The final set of model equations solved for this
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Figure 3. Profiles of (a) Potential(φ1) and (b) Applied current (Iapp) with time in the thin film nickel hydroxide electrode section (c).

case are summarized in Equation 38.

d y1

dt
= j1 · W

FρV
(a)

j1 + j2 = Iapp (b)

d Q

dt
= Iapp (c)

dr

dt
= (

φset
1 − φ1(t)

)
(d)

d I1

dt
+ 2i0,1 exp (a1)

(
d y1

dt

)
+ 2i0,1 exp (−a1)

(
d y1

dt

)
⎡⎢⎢⎢⎣

i0,1

[
2 (1 − y1) exp (a1) · F

2RT
− 2y1 exp (−a1) ·

(
− F

2RT

)]
+

i0,2

[
exp (a2) · F

RT
− exp (−a2) ·

(
− F

RT

)]
⎤⎥⎥⎥⎦

= K
(
φset

1 − φ1 (t)
) + K · r (t)

τi
(e)

Iapp = min
(
2 × 10−5, max (0, I1)

)
(f)

j1 = i0,1

[
2 (1 − y1) exp

(
(φ1 − φ01) F

2RT

)
−2y1 exp

(
− (φ1 − φ01) F

2RT

)]
(g)

j2 = i0,2

[
exp

(
(φ1 − φ02) F

RT

)
− exp

(
− (φ1 − φ02) F

RT

)]
(h)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[38]

It can be noted that in this case, Equation 38b determines the variation
of the measured variable with time, and Equations 38e and 38f govern
the control profile. The controller parameters for this case are K =

0.0250 and τi = 15. Figure 3 shows the results obtained for this case.
Figures 3a and 3b show the potential and current profiles respectively
obtained for different set points φset

1
= [0.4, 0.5, 0.6].

Single particle model.—A single particle model10 for an electrode
is used to illustrate the concept for a model with multiple algebraic
equations in the DAE system. Consider diffusion of a particle inside
a spherical electrode. The model equations for this case are given by:

∂c

∂t
= 1

r 2
·
(

∂

∂r

(
r 2 ∂c

∂r

))
[39]

With the boundary conditions

At r = 0,
∂c

∂r
= 0 [40]

and at r = 1,
∂c

∂r
= jp [41]

where c is the scaled concentration of the particle, r is the scaled radial
variable in the spherical coordinate, and jp is the scaled flux of the
particle inside the electrode, which is a function of the applied current
density.

The surface concentration (cs) is given by:

cs = c (r )|r=1 [42]

In order to solve the model, a finite difference solution is used. The
details of implementing finite difference solution (method of lines
approach) can be found elsewhere,24 and is not discussed here. The
final set of equations obtained after implementing finite difference for
N = 19 internal node points are given by:

dCi

dt
= Ci+1 − 2Ci + Ci−1

h2
+ 2

i · h

Ci+1 − Ci−1

2 · h
, i = 1 . . . 19

[43]

C1 − C0

h
= 0 [44]
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Table II. Expression for the open circuit potential in the single particle model.

E0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2Cs + a3Cs
2 + a4Cs

3+

a5(Cs − a)2(
1

2
tanh(1000(Cs + 1)) + tanh(1000(Cs − a)))+

a6(Cs − b)3(1 − 1

2
tanh(1000(Cs + 1)) + tanh(1000(Cs − b)))+

a7(Cs − c)3(1 − 1

2
tanh(1000(Cs + 1)) + tanh(1000(Cs − c)))+

a8(Cs − d)3(1 − 1

2
tanh(1000(Cs + 1)) + tanh(1000(Cs − d)))+

a9(Cs − e)3(1 − 1

2
tanh(1000(Cs + 1)) + tanh(1000(Cs − e)));

a1 = 9.41894182550,

a2 = −20.8089294802,

a3 = 26.0321098756,

a4 = −11.2415464828,

a5 = −292.586540767,

a6 = −.212804379260

a7 = 125.437252178,

a8 = −198.413506247,

a9 = 164.029238273

a = 0.96, b = 0.733,

c = 0.575, d = 0.535,

e = 0.466

CN+1 − CN

h
= jp [45]

Cs = cs = CN+1 [46]

h = 1

N + 1
[47]

where Ci is the concentration of the particle at the ith node point in
the radial direction. The manipulated variable for this case, is the
dimensionless flux ( jp). The potential of the electrode (V ) is defined
according to a Nernst equation, as given by:

V (t) = E0 − RT

F
log (Cs (t)) [48]

where E0 is the open-circuit potential of the electrode and is assumed
to be a function of the surface concentration (Cs) of the electrode (as
is the case in most battery models), R is the ideal gas constant. F is
the Faraday’s constant, and T is the temperature of the electrode, and
is assumed to be 298 K. The expression for E0 used as a function
of the surface concentration is shown in Table II. The values of pa-
rameters are assumed only for theoretical purposes, and not versus
any standard electrode. The initial conditions of all the variables are
Ci (0) = 0.5,V (0) = 4.09 and jp (0) = 0.

The measured variable is assumed to be V, and a set points of
V set = [3.2V, 3.5V ] are taken.

As in the previous case, the derivative of potential ( dV
dt ) is calculated

by differentiating Equation 48. For this case,

Y = V
dV
dt = d E0

dCs
· dCs

dt − RT
F · 1

Cs
· dCs

dt
[49]

Moreover, ∂g
∂u (y, z, u) (Equation 9) is not zero for this case.

The GMC formulation is written as follows:

dV

dt
= K

(
V set − V (t)

) + K

τi
r (t) [50]

dr

dt
= (

V set − V (t)
)

[51]

From Equations 49 and 50, we can get:

d E0

dCs
· dCs

dt
− RT

F
· 1

Cs
· dCs

dt
= K

(
V set − V (t)

)+ K

τi
r (t) [52]

Equation 45 can be differentiated to get the derivative for dCs
dt (after

substituting Equation 46) as

dCs

dt
= dCN+1

dt
= h · d jp

dt
+ dCN

dt
[53]

From Equations 52 and 53, we get:

d E0

dCs
·
(

h · d jp

dt
+ dCN

dt

)
− RT

F
· 1

Cs
·
(

h · d jp

dt
+ dCN

dt

)
= K

(
V set − V (t)

) + K

τi
r (t) [54]

Equation 54 is solved along with Equations 43–48 to obtain the GMC
control law. When there is no bound on the scaled flux, the equations
to be solved are summarized as:

dCi

dt
= Ci+1 − 2Ci + Ci−1

h2
+ 2

i · h

Ci+1 − Ci−1

2 · h
, i = 1 . . . 19(a)

C1 − C0

h
= 0 (b)

CN+1 − CN

h
= jp (c)

Cs = cs = CN+1 (d)

Cavg (t) =
C0 (t) + 2

(∑N
i=1 Ci (t)

)
+ CN+1 (t)

2N + 2
(e)

h = 1

N + 1
(f)

V (t) = E0 − RT

F
log (Cs (t)) (g)

dr

dt
= (

V set − V (t)
)

(h)

d E0

dCs
·
(

h · d jp

dt
+ dCN

dt

)
− RT

F
· 1

Cs
·
(

h · d jp

dt
+ dCN

dt

)
= K

(
V set − V (t)

) + K

τi
r (t) (i)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[55]

The controller tuning parameter K is chosen as 1 and τi is assumed to
be 1000. Figure 4a shows the profiles of potential with time for two
different set points and the corresponding control profiles are shown in
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Figure 4. Profiles of (a) potential (b) scaled flux (jp) and (c) surface concentration (Cs) with time for the single particle model.

Figure 4b. The profiles for surface concentration are shown in Figure
4c.

In order to implement bounds, same procedure as discussed for the
unbounded case is followed, and the equations are again summarized
below but with bounds on the manipulated variable jp .

dCi

dt
= Ci+1 − 2Ci + Ci−1

h2
+ 2

i · h

Ci+1 − Ci−1

2 · h
, i = 1 . . . 19 (a)

C1 − C0

h
= 0 (b)

CN+1 − CN

h
= jp (c)

Cs = cs = CN+1 (d)

h = 1

N + 1
(e)

V (t) = E0 − RT

F
log (Cs (t)) (f)

dr

dt
= (

V set − V (t)
)

(g)

d E0

dCs
·
(

h · d j1
dt

+ dCN

dt

)
− RT

F
· 1

Cs
·
(

h · d j1
dt

+ dCN

dt

)
(h)

= K
(
V set − V (t)

) + K

τi
r (t) (i)

jp = min (0.20, max (0, j1)) (j)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
[56]

Figure 5 shows the profiles obtained for an upper bound on jp of 0.2
for different set points on voltage. The control profiles obtained in this
case again drive the measured variable to its required set point.

Reformulated pseudo 2 dimensional (P2D) model.—Pseudo 2-
Dimensional (P2D) model proposed by Doyle et al.25 is one of
the most popular physics-based lithium-ion battery model. Other
approaches26,27 have been proposed for efficient simulation of bat-

tery models. Northrop et al.28,29 published a reformulated battery
model, based on the original P2D model, and the reformulated model
was used in this work to obtain the control profiles after implement-
ing GMC. The set of equations and the corresponding parameters
of the battery model are listed in Table III, Table IV and Table V
(Reference 29).

We present two cases for this model, even though GMC formula-
tion can be applied for more variables.

Set point for the charge stored in the battery.—In this case, the
objective is to find the current profiles to obtain the final charge stored
to reach a desired set pointQset , with a bound on the applied current.
Mathematically,

Find Iapp(t) subject to the model equations given in Table III, and
the constraints

Q
(
t f

) = Qset [57]

0 ≤ Iapp(t) ≤ 3C [58]

where Iapp(t) is the applied current, Q(t) is the charged stored in the
battery, Qset is the set-point for the charge, C is the capacity of the
battery and t f is the final time. The value of Qset for this study is taken
to be 14 A-hr.

For this problem (comparing with Equation 2),

Y = Q

The full derivative of the measured variable is directly available from
the model thereby resulting in a direct equation for Iapp instead of
d Iapp

dt . For this case, in Equation 9, ∂g
∂u (y, z, u) is not zero.

The equation for charge stored is given by:

d Q

dt
= Iapp [59]

As in the previous examples, the GMC equation can be written as:

d Q

dt
= K

(
Qset − Q (t)

) + K

τi
r (t) [60]
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Table III. Equations for P2D thermal model.
Governing Equation Boundary Conditions
Positive Electrode

εp
∂cp
∂t = 1

l p

∂
∂ X [

Deff,p
l p

∂cp
∂ X ] + ap(1 − t+) jp

∂cp

∂ X
|X=0= 0

−Deff,p

l p

∂cp

∂ X
|X=1 = −Deff,s

ls

∂cs

∂ X
|X=0

−σeff,p
l p

(
∂�1,p
∂ X ) − κeff,p

l p
(
∂�2,p
∂ X ) + 2κeff,p RT

F
(1−t+)

l p
( ∂ ln cp

∂ X ) = I

∂�2,p

∂ X
|X=0= 0

−κeff,p

l p

∂�2,p

∂ X
|X=1 = −κeff,s

ls

∂�2,s

∂ X
|X=0

1
l p

∂
∂ X [

σeff,p
l p

∂
∂ X �1,p] = ap F jp

(
1

l p

∂�1,p

∂ X
)|X=0 = − I

σe f f,p
∂�1,p

∂ X
|X=1= 0

∂cs
p

∂t = 1
r2

∂
∂r [r2 Ds

p
∂cs

p
∂r ]

∂cs
p

∂r
|r=0 = 0

−Ds
p

∂cs
p

∂r
|r=Rs = jp

ρpC p,p
dTp
dt = 1

l p

∂
∂ X [ λp

l p

∂Tp
∂ X ] + Qrxn,p + Qrev,p + Qohm,p

−K ef f p
∂Tp

∂ X
|X=0 = henv(Tp|X=0 − Tair )

−λp

l p

∂Tp

∂ X
|X=1 = −λs

ls

∂Ts

∂ X
|X=0

Separator

εs
∂cs
∂t = 1

ls
∂

∂ X [ Deff,s
ls

∂cs
∂ X ]

cp |X=1 = cs |X=0

cs |X=1 = cn |X=0

− κeff,s
ls

( ∂�2,s
∂ X ) + 2κeff,s RT

F
(1−t+)

ls
( ∂ ln cS

∂ X ) = I
�2,p |X=1 = �2,s |X=0

�2,s |X=1 = �2,n |X=0

ρsC p,s
dTs
dt = 1

ls
∂

∂ X [ λs
ls

∂Ts
∂ X ] + Qohm,s

Tp |X=1 = Ts |X=0

Ts |X=0 = Tn |X=1

Negative Electrode

εn
∂cn
∂t = 1

ln
∂

∂ X [ Deff,n
ln

∂cn
∂ X ] + an(1 − t+) jn

∂cn

∂ X
|X=1= 0

−Deff,s

ls

∂cs

∂ X
|X=1 = −Deff,n

ln

∂cn

∂ X
|X=0

−σeff,n
ln

( ∂�1,n
∂ X ) − κeff,n

ln
( ∂�2,n

∂ X ) + 2κeff,n RT
F

(1−t+)
ln

( ∂ ln cn
∂ X ) = I

�2,n |X=1= 0

−κeff,s

ls

∂�2,s

∂ X
|X=1 = −κeff,n

ln

∂�2,n

∂ X
|X=0

1
ln

∂
∂ X [ σeff,n

ln
∂

∂ X �1,n] = an F( jn + jsei )

∂�1,n

∂ X
|X=0= 0

(
1

ln

∂�1,n

∂ X
)|X=1 = − I

σe f f,n

∂cs
n

∂t = 1
r2

∂
∂r [r2 Ds

n
∂cs

n
∂r ]

∂cs
n

∂r
|r=0 = 0

−Ds
n
∂cs

n

∂r
|r=Rs = jn

ρnC p,n
dTn
dt = 1

ln
∂

∂ X [ λn
ln

∂Tn
∂ X ] + Qrxn,n + Qrev,n + Qohm,n

−λs

ls

∂Ts

∂ X
|X=1 = −λn

ln

∂Tn

∂ X
|X=0

−K ef fn
∂Tn

∂ X
|X=1 = henv(Tair − Tn |X=1)

dr

dt
= Qset − Q (t) [61]

From Equations 59 and 60, the equation for applied current can be
written as:

Iapp = K
(
Qset − Q (t)

) + K

τi
r (t) [62]

The bounds in Equation 58, are applied on the current as:

Iapp(t) = min

(
54, max

(
0, K

(
Qset − Q (t)

) + K

τi
r (t)

))
[63]

where 54 A/m2 is assumed to be the current equivalent for 3 C. The
controller tuning parameter is chosen as K = 0.01, and τi = 1e − 4.
Equation 63 can be used along with the model equations mentioned
in Table III, to obtain the GMC control profile.
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Figure 5. Profiles of (a) Potential, (b) Scaled flux (jp)
and (c) Surface concentration (Cs) with time for the sin-
gle particle model.

Figure 6a, shows the profile of charge stored reaching the desired
set-point and the corresponding applied current profile is shown in
Figure 6b. Since for this case, there is no constraint given on tempera-
ture, or voltage, the battery is charged at a constant current of 3C that
is the maximum bound on the current, until the charge stored reaches
the desired set-pointQset . After t = 934 seconds, the current falls to
zero in order to keep the charge stored at the desired set-pointQset .
Figures 6c and 6d show the corresponding changes in voltage and
temperature of this constant current charging case, respectively. The
temperature and voltage both increase steadily as expected until the
current is non-zero. After t = 934 seconds, when the current becomes
zero, the temperature starts to fall, whereas voltage remains constant
at the open-circuit value.

Set point for voltage of the cell.—Consider a cell being charged
from a fully discharged state. The set point for the voltage while
charging is set to be V set = 4.2 V. In the P2D model, the voltage of

the cell (V ) is given by the equation:

V (t) = φ1 (t)|x=0 − φ1 (t)|x=L pos+Lsep+Lneg
[64]

where φ1(t) denotes the potential of the solid phase, and L pos , Lsep ,
Lneg , represent the thicknesses of the positive electrode, separator and
negative electrode of the cell, respectively.

This case is similar to the case presented in Thin film nickel hy-
droxide electrode section (c), where the explicit derivative for the
measured variable (voltage) is not given by the model equations.

For this case,

Y = V (t)

and ∂g
∂u (y, z, u) (in Equation 9) is not zero.

Through substitution of other model equations, it can be shown that
the potential of the cell is directly dependent on the applied current
(Iapp). Equation 64 is differentiated with time to get the derivative
of potential. In order to find derivative for other terms occurring in

Figure 6. Profiles of (a) Charge stored, (b) Applied current, (c)
Potential and (d) Temperature with time for the reformulated P2D
model.
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Table IV. Additional Equations.29

Qrxn,i = Fai ji (�1,i − �2,i − Ui ), i = p, n

Qrev,i = Fai ji Ti
∂Ui
∂T , i = p, n

Qohm,i = σeff,i ( 1
li

∂�1,i
∂ X )2 + κeff,i ( 1

li

∂�2,i
∂ X )2

+ 2κeff,i RTi
F (1 − t0+) 1

l2
i

1
ci

∂ci
∂ X

∂�2,i
∂ X , i = p, n

Qohm,s = κeff,s ( 1
ls

∂�2,s
∂x )2 + 2κeff,s RTs

F (1 − t0+) 1
cs

1
l2
s

∂cs
∂ X

∂�2,i
∂ X

Ui (Ti , θi ) = Ui,ref (Tref , θi ) + (Ti − Tref )[
dUi
dT ]|Tref , i = p, n

Ds
i,e f f = Ds

i exp(− E
Ds

i
a
R [ 1

T − 1
Tre f

]), i = p, n

ki,e f f = ki exp(− E
ki
a
R [ 1

T − 1
Tre f

]), i = p, n

Equation 64, all the algebraic equations are differentiated with time,
to convert the system of differential algebraic equations (DAEs) to a
system of ordinary differential equations (ODEs). GMC formulation
is then applied for this case as:

dV

dt
= K (4.2 − V (t)) + K

τi
r (t) [65]

dr

dt
= 4.2 − V (t) [66]

The dV
dt term appearing in the differentiation of all the algebraic

equations, is eliminated by substituting Equation 65. The math fol-
lowed is similar to the set point for potential explained for potential
explained in the thin film nickel hydroxide section (c). The tuning
parameter K is assumed to be 0.01 and τi is taken to be 100. Figure 7
(solid red curve) shows the results when no bound is imposed on
the applied current and the potential for the PI case. In this case, the
voltage of the battery goes above 4.2 V, ultimately driving the voltage
to its desired set point. However, for these sets of tuning parame-
ters, the battery is overcharged before set-point for voltage is reached,
which causes an increase in the rate of battery degradation. Figure 7
also shows the effect of increasing the τi value to 1e9 (dashed green
curve), which drives the voltage to its set-point without going above

the set-point. However, it should be noted that increasing the τi value
decreases the impact of the integral term.

Hence, for this case, GMC formulation is applied using only a
proportional term (P-Controller), as:

dV

dt
= K (4.2 − V (t)) [67]

For this case, the voltage of the battery reaches its set point of 4.2 V,
whereas the current increases first until 189 s, and decreases thereafter,
as shown in Figure 8.

Set point for voltage with bounds on applied current.—In the next
case, the set point of 4.2 V is applied to the potential as in case (b),
but additional bounds are added for applied current as shown below.

0 ≤ Iapp (t) ≤ 30A/m2 [68]

This case is similar to the single particle model case described above.
Figure 9a shows the change in voltage vs time for this case, and Figure
9b shows the GMC control profile for current.

Through these examples, it can be seen that the voltage reaches its
desired set point for both, the bounded as well as the unbounded cur-
rent case. The bounded case is closer to the real life scenario, where an
upper limit is usually applied on the charging current. The advantage
of implementing control through GMC is that the variables are only
to be integrated in time. We implemented the control scheme using
the direct iteration-free DAE numerical solvers previously reported by
Lawder et al.30 This makes the approach more robust and fail-proof,
as standard optimizers fail to find the optimal solution often times
because of their inability to find consistent initial conditions for alge-
braic variables. It should be noted that for simple first order or second
order processes, the time constants of the processes can be related to
the tuning of the GMC parameters. However, physics-based battery
models have multiple dynamics, and we choose an approach to modify
the tuning parameters until no effect is seen in the profiles of control
and measured variables. The arbitrariness in the tuning parameters is
an inherent limitation of the GMC approach.

Performance of GMC under Model Uncertainty

Lee and Sullivan14 have discussed the impact of uncertainty in
parameters in their original manuscript. In this section, we summarize
the same and discuss the uncertainty for the thin-film electrode model.

Table V. List of parameters for the P2D model.29

Symbol Parameter Positive Electrode Separator Negative Electrode Units

σi Solid phase conductivity 100 100 S/m
ε f,i Filler fraction 0.025 0.0326
εi Porosity 0.385 0.724 0.485
Brugg Bruggman Coefficient 4
D Electrolyte diffusivity 7.5 × 10−10 7.5 × 10−10 7.5 × 10−10 m2/s
Ds

i Solid Phase Diffusivity 1.0 × 10−14 3.9 × 10−14 m2/s
ki Reaction Rate constant 2.334 × 10−11 5.031 × 10−11 mol/(s m2)/(mol/m3)1+αa,i

cs
i,max Maximum solid phase concentration 51554 30555 mol/m3

cs
i,0 Initial solid phase concentration 25751 26128 mol/m3

c0 Initial electrolyte concentration 1000 mol/m3

Rp,i Particle Radius 2.0×10−6 2.0×10−6 M
ai Particle Surface Area to Volume 885000 723600 m2/m3

li Region thickness 80×10−6 25×10−6 88×10−6 M
t+ Transference number 0.364
F Faraday’s Constant 96487 C/mol
R Gas Constant 8.314 J/(mol K)
Tre f Temperature 298.15 K
P Density 2500 1100 2500 kg/m3

Cp Specific Heat 700 700 700 J/(kg K)
� Thermal Conductivity 2.1 0.16 1.7 J/(m K)

E
Ds

i
a Activation Energy for Temperature Dependent Solid Phase Diffusion 5000 5000 J/mol

Eki
a Activation Energy for Temperature Dependent Reaction Constant 5000 5000 J/mol
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Figure 7. Profiles of (a) Potential (b) Applied current vs time
for the P2D model obtained using PI controller.

Consider the plant model given by Equations 7 and 8 and the
process model containing uncertainty given by:

dy

dt
= f̂ (y, z, u) [69]

ĝ (y, z, u) = 0 [70]

The GMC formulation for the process model, where set point is given
for the algebraic variable is written as:

dĝ

dt
= ∂ ĝ

∂y
(y, z, u) · f (y, z, u) + ∂ ĝ

∂y
(y, z, u)

·
[

K
(
zset − z

) + K

τi

∫ t

0

(
zset − z

)
dτ

]
+ ∂ ĝ

∂u
(y, z, u) · du

dt
= 0

[71]

To solve GMC under model uncertainty, Equation 71 is used to obtain
the control profile and solved along with Equations 7 and 8. For
the thin-film electrode model, the model uncertainty is considered
by perturbing the parameters i0,1, φ01, T , W by ±10%. Potential
(algebraic variable) is chosen to reach its desired set-point φset

1 in
the presence of uncertain parameters mentioned above. The potential
profiles obtained are shown in Figure 10 and it can be observed that the
GMC approach gives robust performance under model uncertainty, as
the controlled variable reaches its desired set-point in every case.

Conclusions

Generic model control is applied for different types of battery
models such as thin film nickel hydroxide electrode, single particle
model, along with a reformulated pseudo 2D model. The conven-
tional GMC approach is extended for DAEs as well as for problems

Figure 8. Profiles of (a) Potential (b) Applied current density vs time for the reformulated P2D model using P-controller.
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Figure 9. Profiles of (a) Potential (b) Applied current density vs time for the reformulated P2D model using P-Controller.

involving the direct correlation between the measured and the ma-
nipulated variable. The results are presented for various case studies,
and the measured variable is shown to reach the desired set point
in all cases. The approach is found to be extremely robust and fail-
safe. Future work involves the implementation of the GMC control
scheme for problems involving constraints on various state variables
(for example, bounds on voltage and temperature for the P2D model).
In the GMC framework, problems involving constraints or bounds

has to be solved as an optimization problem. The constraint handling
strategy and the need for performing optimization in the GMC frame-
work will be explored in a future publication. The method will also
be extended to explore the control profiles for single input multiple
objective case, like minimizing the capacity fade while maximizing
the charge stored in the battery, while maintaining the temperature
and voltage constraints, and for process and plant models with time
delays.

Figure 10. Profiles of potential reaching its sepecificed set-point, where parameters (a) Exchange current density, (b) Equilibrium potential, (c) Temperature and
(d) Mass of the active material are perturbed by ±10%.
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List of Symbols

c Electrolyte concentration
cs Solid Phase Concentration
D Liquid phase Diffusion coefficient
Def f Effective Diffusion coefficient
Ds Solid phase diffusion coefficient
Ea Activation Energy
F Faraday’s Constant
I app Applied Current
j Pore wall flux
K Proportional Gain
k Reaction rate constant
l Length of region
R Particle Radius, or Residual
t+ Transference number
T Temperature
U Open Circuit Potential
W Mass of the active material

Greek

ε Porosity
ε f Filling fraction
θ State of Charge
κ Liquid phase conductivity
σ Solid Phase Conductivity
�1 Solid Phase Potential
�2 Liquid Phase Potential
τi Integral Time Constant

Subscripts

e f f Effective, as for diffusivity or conductivity
c Related to Electrolyte concentration
cs Related to Solid Phase concentration
n Related to the negative electrode—the anode
p Related to the positive electrode—the cathode
s Related to the separator
�1 Related to the solid phase potential
�2 Related to the liquid phase potential

Superscripts

avg Average, as for solid phase concentration
sur f Surface, as for solid phase concentration
s Related to Solid Phase
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